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Abstract
We review two distinct quantum mechanical theories of atomic scattering
from a point defect, single adsorbate or vacancy, inducing a corrugation much
larger than that of the crystal surface. They are both based upon unrestricted
motion of the probe and involve a realistic interaction potential. The most
sophisticated one is a pseudospectral wavepacket method that is presented
in both Cartesian and cylindrical representations. The physically attractive,
albeit more approximate, close-coupling gas phase approach is also considered.
We report the first realistic comparison with the experimental measurements
of helium atom scattering on CO/Cu(100), at a beam energy of 20 meV.
The combined use of the gas phase and of the reference models enables the
unambiguous interpretation of all experimental peaks.

1. Introduction

The first attempts to characterize the angular distribution of helium atom scattering (HAS) from
single adsorbates were the seminal, theoretical studies of Yinnon et al [52] and of Heuer and
Rice [20], which predicted interference patterns whose analysis could provide a wealth of infor-
mation on the adsorbate geometry and interaction, in comparison with a conventional specular
beam attenuation study that only yields global versus detailed properties. The first experi-
mental observations of these interference patterns are due to Lahee et al [29] for CO/Pt(111),
15 years ago. Toennies and co-workers followed up with high-resolution measurements for
CO either on Cu(100) [4, 18] or on Pt(111) [8]. In the experiments the diffraction signal from
the bare metal surface is always found to be negligible and in addition, at a low, few per cent
CO coverage, the in-plane scattering interference patterns do not vary appreciably relative to
the beam azimuthal angle. Thereby, the metal surface corrugation can be ignored in the process
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under study. Time-of-flight (TOF) analysis at a few selected geometries revealed that the scat-
tering is dominated by the elastic channel. It was also shown in the first experiments that the
interference peak positions remain unaffected while increasing the crystal sample temperature.
Moreover, the sample temperature could be lowered to 50 K in the two last experiments, thus
reducing inelastic scattering processes. One further step was achieved in the last experiment on
CO/Pt(111), for which full TOF measurements were performed in order to separate the elastic
from the inelastic contributions (see the beautiful series of spectra in figure 1 of [8]). Yet, the
scattering intensities are sensitive to most experimental parameters, and obviously to the de-
tails of the interaction between He and the chemisorbed molecule/metal system. Considering
that nowadays state-of-the-art ab initio computations are not accurate enough to determine the
interaction potential for He scattering from such a complex system, especially in the van der
Waals (VdW) region, it is hopeless at present to reproduce the scattering intensities. The avail-
able experimental data have motivated a number of modelling studies aiming at interpreting
the interference patterns [4, 6, 8, 10, 11, 18, 29, 35, 46, 48, 53]. All of these studies consistently
made the approximations of a flat metal surface and of a rigid adsorbate/substrate system, and
focused on reproducing the interference maximum positions in the angular distribution as a
function of momentum transfer and of beam energy. As a result, all scattering mechanisms
most likely to contribute were established, for example diffraction and reflection symmetry
interferences (RSIs) [29], surface-induced rainbows [53] and gas-phase-like rainbows [35]. In
addition, it was found to be crucial to resort to a fully quantum treatment of HAS [53], with
unrestricted, three-dimensional motion of the probe [6] and for a realistic, attractive He–CO
potential [35]. Still, it is not clear whether surface-induced rainbows or RSI actually contribute
under the experimental conditions and depending on beam energy. Indeed, the three crucial
requirements have not been fulfilled in a quantitative comparison with the experiments, apart
from the recent study of CO/Pt(111) by Choi et al [8], who however assume a hard metal wall
and use a pure gas phase potential, thus ignoring any surface-specific rainbow and any distor-
tion mechanism from the van der Waals metal interaction. One reason is that the experimental
distributions are recorded by rotating the sample in the scattering plane, with the source and
detector kept at a fixed angle θSD, hence defining as many distinct pairs of incidence (θi ) and
scattering (θ f ) angles as angular recordings, and thus as many three-dimensional simulations
in a quantum scattering approach involving a realistic surface interaction. The problem would
become even more intricate in order to model the inelastic distributions. Yet, this difficulty
was circumvented by Choi et al [9], who attempted to map the inelastic contributions from the
measured elastic angular distribution for CO/Pt(111), owing to a simple theory of form factors.

The object of this paper is to first review two distinct quantum mechanical strategies, both
based upon unrestricted motion of the atomic probe and involving a realistic interaction po-
tential, and to then report the first realistic theory–experiment comparison for the CO/Cu(100)
system. Following previous studies we make the approximations of a flat metal surface and of
a rigid adsorbate/substrate system. Section 2 gives the details of the interaction potential. The
best, albeit numerically expensive, strategy is a three-dimensional pseudospectral wavepacket
method that is presented in section 3, in both Cartesian and cylindrical representations. The
theory more generally applies to atomic scattering from a point defect, single adsorbate or
vacancy, inducing a corrugation much larger than that of the crystal surface. Application to He
scattering from CO/Cu(100) under normal incidence serves as a description of the contributing
mechanisms and of their energy dependence, based on past interpretations. The physically at-
tractive, albeit more approximate, close-coupling gas phase approach is considered in section 4.
Section 5 focuses on the comparison with the experimental measurements on CO/Cu(100) at
a beam energy of 20 meV, and furthermore gives the unambiguous interpretation of all exper-
imental peaks owing to the combined use of the gas phase and of the reference models.
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Figure 1. Potential energy contours in meV for in-plane He scattering from CO adsorbed on
Cu(100), based on the ab initio He–CO study of Heijmen et al [19]. CO lies along the z axis at
ρ = 0. The solid (0, 10, 20, 50, 100) equipotentials reflect the repulsive interaction whereas the
dashed [−8,−1] ones represent the attractive region.

2. Interaction potential

CO is known to adsorb at top sites of Cu(100) in the collinear sequence Cu–C–O with
dCuC = 1.9 ± 0.1 Å and dCO = 1.15 ± 0.1 Å (see [14] and references therein). The
measure of the CO separation does not differ from the equilibrium value of 1.13 Å found
in the gas phase with sophisticated ab initio techniques [19]. Furthermore, no detectable He
diffraction peak could be observed for the bare Cu(100) [14]. Therefore, the interaction
potential for He scattering from an isolated CO adsorbate can be expressed as the sum
V (R) = VHe–CO(R − RCO) + VHe–Cu(100)(z), involving a gas phase He–CO potential and
the interaction of He with Cu(100) assumed to be flat. R = (x, y, z) and RCO = (0, 0, zCO)

denote the position vectors of He and of the CO centre of mass, respectively; z is the He–surface
distance and ρ = √

x2 + y2 is the lateral He–CO distance. Two distinct gas phase potentials
are considered, namely the old one from Thomas, Kraemer and Diercksen (TKD) [51] and the
most recent one from Heijmen et al [19]. Following Ellis et al [14], the He–surface interaction
relies on the Chizmeshya–Zaremba potential [7] and on the Tang–Toennies van der Waals
damping function f2(x) = 1 − e−x(1 + x + x2

2 ) [50], thus defining

VHe–Cu(100)(z) = V0(1 + γ z)e−γ z − CvdW

(z − zvdW )3
f2

[(
γ − γ

1 + γ z

)
(z − zvdW )

]
with V0 = 1.487 eV, γ = 2.718 Å−1, CvdW = 0.227 eV Å3 and zvdW = 0.171 Å. The
He–surface potential is translated from z to z − zB − zshi f t in order to account for the jellium
edge–surface distance zB = 0.814 Å and for a shift of the origin, which was found useful by
Ellis et al to improve their fit with respect to the TKD potential. One should keep in mind
that in terms of HAS angular distributions, setting a nonzero value to zshi f t is equivalent to
varying zCO by the same amount. zCO is set to the effective CO island height of 2.3 Å derived
by Ellis et al, which tends to be slightly too small relative to the experimental values of dCuC
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and dCO. Nonetheless, in view of the simplicity of the potential modelling, that is assuming
that the gas phase interaction is not distorted by the surface interaction, an adjustable parameter
is needed to locate CO with respect to the calculated He–surface potential and zshi f t is just
as good as any other choice. zshi f t is the only adjustable parameter that will be used in our
studies. Figure 1 displays a contour plot of the He–CO/Cu(100) potential generated with the
gas phase interaction of Heijmen et al and zshi f t = 0.

3. Pseudospectral wavepacket method

The time-dependent Schrödinger equation is solved with the initial wavefunction consisting
of the product of a Gaussian wavepacket, G(z), for the probe motion normal to the surface,

G(z) = (2πσ 2)−1/4 exp

(
− (z − z0)

2

4σ 2

)
exp(ikz0 z), (1)

and of a plane wave for its parallel motion, P(ρ) = exp(ikρi ρ)/A−1/2. A is the effective
beam area and kρi is the incident momentum parallel to the surface. z0 and σ are the
average location and halfwidth (standard deviation) of G(z), and kz0 its average momentum.
G(z) is positioned in the asymptotic region and its momentum distribution corresponds to
a wavepacket impinging on the surface. The Hamiltonian operator for a probe of mass
M , is the sum of the kinetic energy operator, T = −h̄2 − �/2M , that is diagonal in the
K = (kx, ky, kz) momentum space, and of the potential energy operator, V , that is diagonal
in the R coordinate space. The scattering wavefunction is expanded and propagated in a
truncated momentum representation that is a finite set of the orthonormal eigenfunctions of
the Laplacian operator, and thus diagonal asymptotically. The pseudospectral or orthogonal
collocation approach [16, 17] consists in setting up the isomorphic transformation between the
truncated momentum representation and a discrete coordinate representation (DCR), in which
V is assumed diagonal. This assumption is minimized by the Gaussian quadrature underlying
the discrete orthogonal transform and backtransform steps. The failure of this assumption is
better known as ‘aliasing’ and can be avoided by augmenting the grid density in the DCR. In
Cartesian coordinates the pseudospectral approach implied by the Laplacian eigenfunctions,
is the well known Fourier method [24, 25, 41].

3.1. Cartesian representation (x, y, z)

The Laplacian eigenfunctions are three-dimensional direct products of normalized Fourier
functions defined as �F

m(u) = exp(ikum u)/
√

Lu , on a segment Lu along u = x, y, z, with
eigenvalues −k2

um
. The finite basis size, Nu , defines discrete Fourier transforms (DFTs)

Fu†
mα = exp(−ikum uα)√

Nu
= √

ωα�
F

m (uα) (2)

with equal weights and/or spacings ωα = �u = Lu/Nu in the DCR. The trapezoidal rule
underlying the DFT is of order 2Nu − 1 for plane wave expansions [16, 17, 41] and relates to
a Gauss–Chebychev quadrature [13, 42]. An additional asset is that the Fourier method can
exploit the fast Fourier transform (FFT) algorithm to perform the requested DFTs [15–17, 23].

A = Lx L y would be equivalent to the surface unit cell in a conventional atom–crystal
interaction, but since the CO defect breaks the periodicity of the surface, it must correspond to a
surface mesh, ραβ = (α�x, β�y), the area beyond which the scattering contribution is purely
specular relative to the CO-induced angular distribution. The radial symmetry of the interaction
model suggests Lx = L y and Nx = Ny , with −Nx/2 � α, β � Nx/2. Following Kroes and
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Mowrey [28], the shifting theorem of Fourier analysis is used to treat any arbitrary angle
of incidence. Simply, rather than Fourier expanding around kρ = (kx = 0, ky = 0), the
parallel momentum mesh, kρmn = (kxm , kyn), is centred around kρ = kρi , both along x and
y, with Fourier spacings �k = 2π/Lx . Since the momentum representation is our primary
representation and since we are not concerned with any property of the wavefunction in the
DCR, the exp(±ikρi ραβ) shifting and backshifting steps required within the DCR [28] can just
be ignored. In addition to straightforwardly selecting the θi value of choice, this technique
optimizes the momentum sampling at non-normal incidences. Furthermore, defining the
scattering plane perpendicular to y, the reflection symmetry with respect to ky = 0 or y = 0
can be exploited by applying fast cosine transforms (FCTs) [5] in the symmetry-adapted cosine
momentum basis or DCR of size Nxs = Nx/2 + 1, instead of full FFTs along y [31]. When
Nx � 1, as is the case here, the FCT scheme reduces by a factor of two both the overall three-
dimensional grid size and the execution time, apart from some additional overhead associated
with the FCT.

The scattering wavefunction is evolved in time via the second-order split operator
propagator (SOP) of Feit et al [15] owing to the following symmetric partitioning of the
time evolution operator:

U(�t) ≈ exp

(
−i

T (K)�t

2h̄

)
F z†C yF x† exp

(
−i

V (R)�t

h̄

)
F xC yF z exp

(
−i

T (K)�t

2h̄

)
(3)

with DFT matrices F u defined in equation (2), and where Cy designates the discrete cosine
transform along y, which is its own inverse [5]. Under normal incidence an FCT scheme can
also replace the FFT scheme along x and the reflection symmetry with respect to ky = kx or
y = x can be further exploited by working with a symmetry-needed grid of size [Nxs(Nxs +1)]/2
that is smaller than a full two-dimensional Fourier grid, by a factor of eight when Nx � 1 [31].
Although the SOP is much less sensitive to the spectral range spanned by the H operation
than for example the Chebychev propagator [49], it is useful to apply an energy cut-off, Emax ,
to both the maximum potential [15] and kinetic [25] energies. Since parallel momentum
transfer is very efficient in the present case and since the largest anisotropy occurs along z at
the repulsive wall, whereby aliasing is more probable than along x or y, it is appropriate to
choose Emax = Ezmax , which should be a good cut-off overestimate. As in [33, section 3.5],
the energy cut-off also defines the number of ‘active’ kρ states, that is for Ex + Ey � Emax ,
thus reducing the labour associated with the transforms along z and with the kinetic energy
multiplications. A simplified asymptotic treatment [30, 33] within the Chebychev scheme can
also be adapted to the SOP. Within the K-primary representation there is no need to explicitly
transform the wavefunction in the {x, y} DCR in the asymptotic region, that is for z � z∞,
since the potential coupling must be negligible. One only needs to precompute the diagonal
matrix elements of V in the mixed (kx, ky, z) representation, which are straightforwardly given
by the two-dimensional trapezoidal rule as

V (z � z∞) = 1

N2
x

Nx∑
α=1

Nx∑
β=1

V (ραβ, z), (4)

and its SOP components SV
mnmn(z) = exp(−i V (z�z∞)�t

h̄ ) that supersede SV (z) =
C yF x† exp(−i V (R)�t

h̄ )F xC y for z � z∞ in equation (3). This results in diagonal
multiplications for the potential energy operation for z � z∞, which represents a negligible
numerical cost in comparison with the FCT/FFT savings. The savings are significant since the
x and y transform lengths are much larger than the z one because of the lack of mesh periodicity,
and thus computationally much more expensive. We use the estimate z∞ = min(z0 − σ, z f )
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as both the initial wavepacket and the flux analysis performed at z f (see below) should lie in
the negligible-potential-coupling region.

In order to limit the extent of the spatial representation the outgoing wavefunction is
absorbed near the grid edge at large positive z. One way to do this is to apply splitting
functions after each time step when the atomic probe recedes into the asymptotic region [26].
Alternatively, one can introduce an optical potential in the absorbing region [27]. In the
context of the second-order SOP the two techniques are equivalent [44]. However, within the
K-primary representation the first technique requires an additional pair of FFTs along z at
each time step. Therefore, we use an optical potential which we choose to be of cubic form,
i.e.

Vopt (z > z f ) = −iε

(
z − z f

Lopt

)3

where Lopt = zNz − z f , with strength (ε) and length (Lopt ) parameters optimized with respect
to the outgoing energy range and according to some error criterion [47]. In complement to the
absorbing procedure a floating grid [33, 37, 38] along z can be used to bring the wavepacket into
the interaction region in a first stage, and to achieve a minimal grid extent when absorption is
turned on in the second stage. Once the absorbing procedure is started Vopt(z > z f ) is added to
V (z � z∞), and a flux analysis [12, 54] is performed at z f , just ahead of the absorption zone.
The width of G(z) (cf equation (1)) defines the energy range available for post-collisional
analysis. The energy-resolved probability for the probe to scatter with parallel momentum
kρmn is calculated as

Pmn(E) = h̄

M

1

[G(E)]2
Im

[
ψ
mn(z f , E)

(
dψmn(z, E)

dz

)
z=z f

]

involving the Fourier transform of the time-dependent coefficients of the parallel momentum
representation at z f

ψmn(z f , E) =
∫ ∞

0
ψmn(z f , t) exp(iEt) dt

and a similar transform for the derivative of the wavefunction at z f , which can be expressed
owing to its Fourier representation

dψmn(z, t)

dz
= Dzψmn(z, t) = [F z(ikz)F

z†]ψmn(z, t).

Applying FFTs back and forth is a brute force method that computes the derivative for all z grid
points. The most accurate and efficient way is to precalculate the row of the derivative matrix
for the flux analysis point from the analytical expressions derived by Meyer [41], i.e. Dz

f f = 0,

Dz
f i �= f = (−1)i− f 2π

Lz

(
2 fcirc

[
(i − f )π

Nz

])−1

and to perform the row-vector multiplication for each desired kρ state. fcirc is the circular
sine (tangent) function for an odd (even) number of grid points along z. The flux formalism
yields probabilities without phase resolution and is therefore, when used in conjunction with
the absorption procedure, the analysis method that can optimally limit the extent of the z
grid. Within the K-primary representation it amounts to FFTing each desired kρ component
along z after each time step. This is however much less numerical work in comparison with
all the savings enabled by the K-primary representation choice. Furthermore, since the K

representation is the asymptotic representation it is simplest to set up the initial wavepacket,
i.e. G(z) is placed in the specular channel and all other channels are zeroed out, and no (x, y)
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transformations are necessary for the flux analysis as would be the case within the DCR-
primary representation. Moreover, the flux analysis can be restricted to the asymptotically
open channels, and even further for the problem under study, by only considering the in-plane
scattering momentum states. Then, the flux computation is really negligible.

Before proceeding any further the SOP versus the reference Chebychev propagator choice
can be briefly explained. The pseudospectral wavepacket approach should scale linearly with
the number of Hamiltonian operations. This is the case in our implementations within either
the Cartesian or cylindrical representation. To illustrate the SOP efficiency we are using the
‘model I’ three-dimensional application of Carré and Lemoine [6], who published the most
involved calculations on the subject until the present work. A time step�t = 40 fs was found
to be small enough to reproduce the angular distribution to the desired accuracy of two to three
digits. Thereby, the SOP calculation needed 4.2 (4.5) times fewer Hamiltonian operations than
for an equivalent global Chebychev time propagation with a relative expansion truncation error
of 10−7(10−14). Since the absorbing procedure and the flux analysis are optimally limiting
the extent of the grid and of the time propagation, the global Chebychev propagation is not
appropriate. The Chebychev propagation should then be split into several time steps, small
enough to ensure proper time sampling for the flux analysis as well as stability of the scheme
in the presence of an optical potential [27], and would thus lead to an increased total number
of Hamiltonian operations. Nevertheless, a gain by a factor > 4 is already impressive. In
addition the SOP memory requirements are also more favourable.

3.2. Cylindrical representation (ρ, φ, z)

The radial symmetry of the interaction model (i.e. V (R) = V (ρ, z) does not depend on φ
because CO stands upright) is then fully described. Following Persson and Jackson [45] and
Lemoine and Jackson [38], the scattering wavefunction can be written as the partial-wave
expansion

�(R, t) =
+∞∑

ν=−∞
cνψ

ν(ρ, z, t)
exp(iνφ)√

2π
(5)

and the two-dimensional plane wave P(ρ) is expanded in cylindrical waves to find

ψν(ρ, z, t = 0) = iν

cν

√
2π

A
Jν(kρi )G(z)

where Jν(kρiρ) is a Bessel function of the first kind. Absorbing boundary conditions are
enforced at ρ = L, implying Jν(kρi L) = 0 and A = πL2. The cν coefficients are chosen
to normalize the radial part of each ψν independently. They can be deduced analytically by
applying the orthogonality property of the Bessel functions and a recurrence relation to evaluate
the resulting derivative [32, see equations (12), (13)], thereby yielding

c2
ν = 2

L2

∫ L

0
J 2
ν (kρiρ)ρ dρ = J 2

ν+1(kρi L)

so a normalized Bessel function [32, equation (13)] is obtained for the ρ dependence. By
symmetry only the ν � 0 partial waves need to be considered. The boundary condition also
implies that kρi and L cannot be chosen independently. Since kρi =

√
2M E
h̄ sin θi is an initial

beam condition L has to be varied as a function of ν (see [38, section 2 and 3.3]). The details
of the discrete Bessel methodology can be found elsewhere [32, 34, 38]. Only the main aspects
will be mentioned here.

ψν is expanded in terms of the Laplacian eigenfunctions, that is a direct product of a Fourier
function�F

l (z) and of a normalized Bessel function expressed as�B
jν(ρ) = n jν Jν(kρ jρ) with
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n jν = √
2/|L Jν+1(s jν)|, where s jν is the j th nonzero zero of Jν and kρ j L = s jν , and with

eigenvalue −k2
ρ j

. The finite basis size, Nρ , defines symmetric discrete Bessel transforms
(DBTs)

Bν
jα = nανn jν Jν(kρ jρα) = √

ωα�
B
jν(ρα) (6)

with nαν = √
2/|K Jν+1(sαν)|, where Kρα = sαν and K L = sNρ+1 [32, 34]. By analogy with

the Fourier method the (ρα, ωα = n2
αν) set characterizes the Bessel quadrature underlying

each DBT, which has been shown to be of Gaussian accuracy [32, 34]. Actually, these
DBTs are nearly but not exactly orthogonal. However, they can be orthogonalized very
easily [34]. Moreover, the difference between results stemming from near-orthogonal
and orthogonalized DBTs has always been found to be negligible in previous bound-state
calculations [34] and Eley–Rideal reactions [38], or in the present study. Accordingly, we
preserve the same DBT notation in the following although the results presented hereafter
are performed with orthogonalized DBTs, since the orthogonalization procedure involves a
negligible precomputation time [34].

According to the partial-wave expansion of equation (5), each ψν is propagated
independently with the K-based second-order SOP translated as

Uν(�t) ≈ exp

(
−i

Tν(K)�t

2h̄

)
F z†Bν exp

(
−i

V (R)�t

h̄

)
BνF z exp

(
−i

Tν(K)�t

2h̄

)
(7)

with DBT matrices Bν defined in equation (6), and where Tν includes the Laplacian (ν/ρ)2

term singular at the origin. Whereas the DBT does not rely on a fast algorithm it resolves
analytically the ρ = 0 singularity which proves to prevail in terms of accuracy and grid
size [32, 34], especially for ν = 0 and 1.

The simplified asymptotic treatment amounts to precomputing the diagonal matrix
elements of V in the mixed (kρ, z) representation for z � z∞. The counterpart of equation (4)
is now given by the Bessel quadrature as

Vj j
ν
(z � z∞) =

Nρ∑
α=1

Bν
jαV (ρα, z)Bν

jα,

and is used to precalculate the SOP components SV
j j(z) = exp(−i Vj j

ν
(z�z∞)�t

h̄ ) that supersede

SV (z) = Bν exp(−i V (R)�t
h̄ )Bν for z � z∞, in equation (7). Although the treatment applies to

one versus two dimensions the savings remain significant because the DBT multiplications take
most of the computation time. The energy cut-off, absorbing procedure, floating grid technique
and flux analysis are similar to those used in the Cartesian representation, except that the time-
dependent coefficients of the parallel momentum representation now read ψνj (z, t). However,
two more steps are required, that is the projection onto plane wave states and the summation
over all the contributing partial waves. Furthermore, the kρ j grids are ν dependent and a
delicate interpolation procedure is needed. Moreover, the lack of a shifting theorem for the
Bessel expansion makes the off-normal incidence calculations less flexible. Indeed, in order
that kρi matches a kρ j grid point one has to vary L accordingly and to make sure that the L
value is satisfactory regarding both the boundary condition and the Nρ sampling. In order to
compare with the experiments it is necessary to sample large incidence angles that will imply a
large partial-wave expansion and, thus, a series of tedious calculations, even though these are
fast in terms of computation. Therefore, we choose to forego the Fourier–Bessel representation
for the off-normal-incidence calculations.
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3.3. Normal-incidence application

Under normal incidence the cylindrical partial-wave expansion reduces to the ν = 0
contribution, so the task is greatly simplified and the projection onto plane-wave states is
straightforward. Hence, the cylindrical representation can be most efficiently used in this
case. This can also help a lot with defining appropriate values for a number of parameters for
off-normal-incidence purposes without the trouble of a thorough three-dimensional Fourier
convergence study. In order to compare with the Cartesian representation one needs to
set L = Lx/2 and Nρ = Nxs . All other parameters are similar to those in the Cartesian
representation. We used Nz = 96 and Nρ = 145. Figure 2 compares the angular distributions
calculated for a beam energy of 20 meV and the interaction potential shown in figure 1, within
the cylindrical, three-and two-dimensional Cartesian representations. The three-dimensional
Fourier distribution is superimposed on the two-dimensional Fourier–Bessel with the exception
of the slight differences for the largest �K momentum transfers. This large-�K region
corresponds to receding velocities that are quite slow or even too slow for the probe to escape
from the He–Cu(100) potential well. This grazing-exit-angle region is very difficult to describe
since it would necessitate a very long propagation time and a quasi-infinite absorption length
to account for the huge associated de Broglie wavelengths. Furthermore, both the scattering
and potential models are too simplistic to provide a realistic description in this situation since
any small effect, whether it comes from the present potential accuracy or for example from
missing metal corrugation and phonons, not mentioning any kind of defect and the lateral
interaction with other CO adsorbates, will strongly affect the large-�K region. Nonetheless,
the agreement between the three-dimensional Fourier and Fourier–Bessel curves is still very
good in this region and perfect for most of the distribution. This demonstrates the accuracy of
the cylindrical representation, which is even expected to be the highest since it relies on two-
versus three-dimensional simulations. In contrast the two-dimensional Fourier curve strongly
disagrees, both quantitatively and qualitatively. As noted previously [6], in analogy with optical
diffraction one would replace a two-dimensional hole of radius L with a one-dimensional slit of
length 2L, and observe a same level of disagreement for�K < 3 Å−1. In the large-�K region
the disagreement is no longer qualitative since it corresponds to surface-induced rainbows that
can be traced to inflection points in the adsorbate equipotential of the classical turning point,
that is at the collision energy probed [53]. Indeed, because of the radial symmetry of the
scattering model the inflection points and the deviation angles are similar whether or not the
probe motion is restricted to a plane.

Carré and Lemoine [6] have analysed the HAS energy dependence for a model CO/Pt(111)
system. Such an analysis is reported in figure 3 for a higher energy range and the interaction
potential shown in figure 1. The near-specular hump (R0) that evolves into a shoulder at higher
energies is a rainbow maximum induced by the He–adsorbate van der Waals forces [35, 39]. The
next two oscillations (F1, F2) are Fraunhofer diffraction peaks [29]. The next, broad bimodal
structure results from the competition of two distinct mechanisms. The first maximum may
either be a third Fraunhofer peak or the single-collision rainbow manifestation. This rainbow
effect classically occurs at the ripple present at low equipotential values, in the vicinity of the
adsorbate [53]. Since the ripple is visible in the 3–3.5 Å radial range of figure 1, and in analogy
with the previous findings on the model CO/Pt(111) system, we incline to the single-collision
rainbow interpretation. This could be inferred from a classical analysis such as performed
by Yinnon, Kosloff and Gerber [53]. The second maximum of the broad structure and all the
remaining oscillations are double-collision rainbow effects including supernumerary structures
appearing at increasing energies (R1, R2, R3, . . .). One of the two impacts classically occurs at
an inflection point in the adsorbate equipotential at the probe energy [53]. As explained above,
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Figure 2. Log-scale plot of the angular distribution of He scattering from CO adsorbed on Cu(100),
under normal incidence, at a collision energy of 20 meV. The solid curve depicts the result obtained
within the cylindrical representation whereas the dotted and dashed curves refer to the three-and
two-dimensional Cartesian representations.

the very end of the angular distribution should not be given a precise meaning. It is noteworthy
that the R0 and Fraunhofer maximum positions are fixed relative to�K , whereas the large-�K
rainbow maximum positions shift outward with increasing energy.

4. Close-coupling gas phase approach

The two independent studies of Jónsson et al [22] and of Heuer and Rice [20] were the first
to explicitly draw a parallel between the atomic scattering from single adsorbates and atom–
molecule scattering in the gas phase. By assuming an underlying flat surface and enforcing
the vanishing boundary condition along the mirror plane, the atom–adsorbate scattering can
be formulated as the interference of two gas phase collision events, i.e. the so-called RSI. The
reflection construction forms a virtual molecule by extending the probe–adsorbate interaction
by symmetry with respect to the mirror plane [20, 22]. In gas phase scattering the angular
distribution is conveniently referred to as the differential cross section (DCS), defined as the
square of the scattering amplitude [20, 39, 43]. The scattering amplitude for the atom–adsorbate
scattering, F , is expressed in terms of those for the atomic scattering with the virtual molecule,
f , that is

F(k f ,ki ) = f (k f · ki)− f (k f · ks), (8)

where ki ,k f ,ks designate the incident, final and specular momentum vectors. f (k f · ki )

describes the direct scattering from the adsorbate whereas f (k f · ks) accounts for the probe
specularly reflected from the mirror surface, before or after hitting the adsorbate. This gas
phase approach has been pursued by Manson, Toennies and co-workers [18, 29] within the
hard-wall approximation. It was later implemented by Lemoine [35] for both hard and
soft potentials, thereby revealing that the first interference peak in the angular distribution
is a rainbow maximum arising from the van der Waals interaction between the probe and
the adsorbate [39]. Recently, a similar approach has been proposed by Choi et al [8, 11].
Lemoine [36] has demonstrated the equivalence between their analytical derivation and that
of Heuer and Rice [20], for a hard-hemisphere model. Because the same boundary condition
and reflection symmetry are exploited it is expected that the equivalence between the two



Quantum mechanical studies of helium atom scattering from isolated CO molecules on metal surfaces 6273

Figure 3. Log-scale plot of the angular distribution of He scattering from CO adsorbed on Cu(100),
under normal incidence, at collision energies of 20, 30 and 40 meV from top to bottom panel. Fi

labels a Fraunhofer oscillation and Ri a rainbow structure. The vertical lines indicate the steadiness
of the R0 and Fraunhofer maximum positions.

formulations subsists for a realistic, attractive He–CO potential. Yet, the earlier formulation is
simpler and furthermore represents the direct application of the reflection symmetry. Moreover,
the gas phase formulation enables the straightforward use of a number of available close-
coupling scattering packages, without the need to implement a specific code for it. Indeed, the
time-independent close-coupling approach is very well suited to treating rotationally inelastic
collisions between an atom and a rigid rotor. Since standard close-coupling techniques have
been well known for quite a long time, we shall not describe them here. We rather refer the
reader to the efficient propagation algorithms of Manolopoulos and Alexander [2, 40], which
we have resorted to in this study, and to the references therein.



6274 S Nave and D Lemoine

Under the experimental in-plane scattering conditions with θSD = θi + θ f = 95.8◦, the
RSI amplitude of equation (8) reads

F(θi ) = f (π − θSD)− f (|θSD − 2θi |). (9)

The DCS angular dependence is well characterized in the gas phase [39, 43], giving rise
to rainbow and diffraction oscillation patterns (see also figure 1 of [3] for an instructive
comparative series of total DCS for scattering of He off Ar,O2, NO and N2). Forward scattering
dominates, especially in the near-elastic (specular relative to the surface) range. Therefore,
the direct scattering from the adsorbate, i.e. f (π − θSD) in equation (9), only contributes as a
constant, and the dominant near-specular scattering originates from the double-collision event,
f (|θSD − 2θi |) in equation (9).

The probe interaction with the virtual molecule is obtained from the reflection
construction [8, 20, 22]. The mirror plane should locate the repulsive wall of the probe–
substrate interaction, outward with respect to the surface plane. The position of the adsorbate
centre of mass above the mirror plane,zma , plays the same role as the adjustable zshi f t parameter
in the reference model. If Rm = R − RCO + Rma = (x, y, zm = z − zCO + zma) denotes
the probe position vector with respect to the origin at the mirror plane, lying directly below or
above CO, the interaction potential for the virtual molecule is defined as

VHe–aa(Rm) =
{

VHe–CO(ρ, zm − zma) if zm � 0

VHe–CO(ρ,−zm − zma) if zm < 0
(10)

where ‘aa’ reflects the fact that the adsorbate interaction probed by the scatterer generates
one half of the virtual homonuclear molecule. The adsorption of CO on Cu(100) implies
that He probes predominantly the O end of the CO molecule, and that equation (10) induces
an interaction potential that is intermediate to the He–O–C and He–O2 scattering cases. A
schematic view of the reflection construction and of the classical RSI trajectories deflected by
VHe–aa is provided in figure 4. VHe–aa is represented by a few energy contours calculated from
the He–CO potential of Heijmen et al [19], with zma = 0.

5. Comparison with the experiment

Similar to the normal-incidence simulations we used a three-dimensional (96 × 145 × 288)
grid size in the pseudospectral calculations. In order to compare with the experiment the
angular distribution was sampled every 0.07 Å−1 with respect to parallel momentum transfer
�K = ki(sin(θSD −θi)− sin θi), according to the allowed (θi , θ f ) range. Following Ellis et al
[14], the TKD He–CO potential was considered with zshi f t = 0.64 Å. However, the comparison
with the HAS experimental measurements of Graham et al [18] on the CO/Cu(100) system,
at a beam energy of 20 meV, yields a TKD-based angular distribution that is significantly
squeezed and shifted inward with respect to the specular scattering. In order to make up for
this zshi f t would have to be much increased, up to a quite unrealistic value. Therefore, the
TKD potential was dropped and the most recent He–CO potential of Heijmen et al [19] was
then used to generate all angular distributions shown in this work. The comparison, at a beam
energy of 20 meV, is displayed in figure 5, for both zshi f t = 0 and 0.16 Å. Only the angular
range including identifiable maxima besides Bragg peaks in the experimental distribution
is shown. The vertical arrows point to the positions of the absolute experimental maxima
and also pass through the calculated interference peaks. With zshi f t = 0 the agreement on the
maximum positions is very good, considering that the experimental oscillations are not sharply
peaked and that the arrows do not point to the bump centres. The dashed curve illustrates the
sensitivity to the zshi f t parameter for which a variation of +0.16 Å slightly shifts the oscillatory
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Figure 4. Schematic view of the reflection construction for θS D = θi + θ f = 95.8◦ , and of the
classical RSI trajectories deflected by the gas phase model interaction, represented by a few energy
contours in meV, calculated from the He–CO potential of Heijmen et al [19], with zma = 0. The
dashed (−1,−2.75,−1) equipotentials reflect the van der Waals attraction whereas the solid (0,
10, 20) ones locate the repulsive wall of the He interaction with the virtual homonuclear molecule
sketched as O–CC–O.

pattern outward. The zshi f t = 0 adjustable value might be a coincidence. In any case, in
view of the simplicity of the interaction model it is very gratifying to obtain such a satisfactory
comparison with the experiment.

We now apply the gas phase approach for completeness. The gas phase calculations were
carried out with the Hibridon scattering code, version 4.1 [1], that implements the propagation
algorithms of Manolopoulos and Alexander [2, 40]. The Hibridon code was slightly modified in
the DCS calculation according to equation (9). Equation (10) also requires a slightly modified
potential interface. The rotational constant of the virtual rigid rotor molecule was taken to be
that of CO, that is 1.93 cm−1 [21]. The results of the simulations with zma = 0 are detailed
in figure 6. The vertical arrows pointing to the experimental maximum positions, that are
symmetric with respect to �K = 0, pass through the calculated interference peaks. It is
seen that the agreement is quite good for the first oscillation whereas the next two calculated
oscillations are much too far in. A very good agreement on all three peak positions can be
obtained with zma = −0.32 Å, which seems to be a rather significant adjustment. This is
in contrast with the previous work of Lemoine [35], which did not involve any adjustment.
This might originate from one of the two major qualitative differences from the present study,
that is the normal-incidence geometry and the isotropic CO model. Nonetheless, qualitatively,
there is no ambiguity about the relevance of the three gas phase oscillations located in the
vicinity of the experimental interference maxima. Furthermore, the normal-incidence analysis
demonstrates that the three first maxima have fixed �K positions, thereby relating to the gas
phase model. Thus, we can unambiguously assign the experimental maxima as being the R0,
F1 and F2 peaks on both sides of the specular spike.

The gas phase formulation has the additional asset of enabling a straightforward assessment
of the relevance of the RSI mechanism. This can be done by simply ignoring the constant,
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Figure 5. Log-scale plot of the angular distribution of He scattering from CO adsorbed on Cu(100),
for the θS D = 95.8◦ geometry, at a collision energy of 20 meV. The solid curve depicts the
experimental measurements of Graham et al [18], whereas the dotted and dashed curves refer to
the pseudospectral calculations with zshi f t = 0 and 0.16 Å, respectively. The vertical arrows point
to the experimental maximum positions. The two arrows pointing to the near-specular shoulders
are only vaguely indicative of the location of the rainbow remnant maximum.

Figure 6. Log-scale plot of the DCS of He scattering from CO adsorbed on Cu(100), for the
θS D = 95.8◦ geometry, at a collision energy of 20 meV. The gas phase model depicted in figure 4
with zma = 0 was used to generate all the curves. The solid curve depicts the total DCS whereas
the dotted curve retains only the double-collision events and the dashed curve ignores rotational
excitation. The dashed–dotted curve refers to the isotropic molecule model. The vertical arrows
point to the experimental maximum positions, with the near-specular one being only vaguely
indicative of the location of the rainbow remnant maximum.
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direct-scattering signal, thus yielding the dotted curve in figure 6. It can be seen that there
is no variation in the peak positions. Hence, the RSI mechanism plays a negligible role in
the experimental distribution at a beam energy of 20 meV. In the gas phase approach the
virtual molecule can fully rotate upon collision with the probe. One may question whether
this rotational excitation makes sense, since the interaction model assumes a fixed adsorbate.
On one hand, the rotationally inelastic DCS can be subtracted, which gives the dashed curve
in figure 6. Again, no significant variation of the peak positions is noticeable. On the other
hand, the potential anisotropy can be stripped off, thereby defining an isotropic adsorbate
profile as in many previous studies [10, 11, 18, 29, 35]. The dashed–dotted curve illustrates
the assumption of considering a virtual atomic versus molecular particle. This proves to have
a quite radical effect, with the second oscillation significantly shifted inward and the third one
even more. This effect has been analysed by Pack and the comparison between the solid and
dashed–dotted curves is similar to that in figure 4 of [43]. If the isotropic model effectively
prevents any adsorbate rotation it however modifies the probe interaction substantially.

6. Conclusions

We have reviewed and applied two distinct and realistic quantum mechanical strategies aimed
at the characterization of the angular distribution of atomic scattering from a point defect
inducing a corrugation much larger than that of the crystal surface. The first strategy, a
quantum wavepacket approach relying on pseudospectral methods, has been detailed in both
Cartesian and cylindrical coordinates. Normal-incidence simulations of He scattering from
CO/Cu(100) have confirmed previous analyses of the contributing mechanisms and their energy
dependence. Near-specular scattering shows a rainbow (R0) hump induced by the He–CO
van der Waals forces, and evolving as a shoulder at higher energies. Next, Fraunhofer (Fi )
diffraction oscillations can be found. One important feature is the steadiness of both the
R0 and Fi maximum positions as a function of parallel momentum transfer and of collision
energy. At intermediate momentum transfer the manifestation of a single-collision rainbow
effect, classically occurring at a ripple in the equipotential of the turning point at the vicinity
of the adsorbate, may be seen. The large deviation region is characterized by double-collision
rainbow (Ri ) peaks with supernumerary structures appearing at increasing energies. Those
rainbows have momentum transfer positions shifting outward with increasing energy.

The second strategy is a close-coupling gas phase approach that is derived by enforcing
the vanishing boundary condition along a mirror plane. It results in the difference between
the scattering amplitudes for the direct scattering from the adsorbate on one hand, and for
the double-collision event on the other hand. This reflection symmetry interference (RSI)
formulation is quite simple and generates a virtual homonuclear molecule from the adsorbate
interaction probed by the scatterer. The main qualitative weakness of this gas phase model is
that the single-collision rainbow effect is not accounted for.

We have reported the first realistic comparison with the HAS experimental measurements
of Graham et al [18] on CO/Cu(100), at a beam energy of 20 meV. The agreement obtained on
the maximum positions is very good, owing to a single adjustable parameter. The combined
use of the gas phase and of the reference models enabled us to unambiguously assign the
experimental maxima as being the R0, F1 and F2 peaks on both sides of the specular spike.
We have also evidenced that the RSI is negligibly small in this case. Furthermore, we have
shown that an isotropic gas phase model fails to reproduce the maximum positions. The dual
strategy we have adopted in this preliminary HAS study of the CO/Cu(100) system has proved
quite useful and needs to be pursued. Higher-energy simulations are useful to search for the
double-collision rainbow presence in the experimental distributions, as well as whether to
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confirm the lack of RSIs. On the other hand, the single-collision rainbow occurrence must
be checked for at lower energies. Lastly, even better resolved measurements exist for the
CO/Pt(111) system [8], and it would obviously be interesting to confront the results of three-
dimensional pseudospectral calculations with these, and thereby to clearly assess the role of a
distinct substrate.
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